Die Modulbeschreibung sollte direkt liber diesen Link in HISinOne eingepflegt werden.

Module code

Module title

Category

Software Quality Engineering & DevOps

MA

MAIE1050

Degree program

MA Software Engineering

Faculty

Building Services Engineering and Computer Science

Module coordinator

Prof. Dr. Volker Herwig

Module type Mandatory module
Frequency 1x annually in SuSe
Recommended semester 1. semester
Credit (ECTS-Points) 5

Exam

Academic Assessment
Method

PZ = Examination requirement (N: graded)

PZ (N), K90)
Teaching language English
A(_imission requirements for none
this Module
Module duration 1 Semester

Required Registration

Students enrolled in the above-mentioned degree program/standard se-
mester will be registered automatically upon re-enrollment; all other par-
ticipants, please refer to the information below.

none
Contact | Workload (in h)
Group Number hours
Course Lecturer Type Size of per Face- Self-
(max.) | Groups week to- study
(SWS) face
Software Quality Engi- Semi- 1
neering & DevOps Extern nar 30 4 60 65
Wahlen Wahlen
Titel der Lehrver- » Sie ein Sie ein
Dozent*in Ele- Element
anstaltung.
ment aus.
aus.
Titel der Lehrver- | Dozent*in Wahlen Wahlen
anstaltung. Sie ein Sie ein
Ele- Element
ment aus.
aus.
Wahlen
Sie ein
Ele-
ment
aus.
Titel der Lehrver- | Dozent*in Wahlen Wahlen
anstaltung. Sie ein Sie ein

Zuletzt bearbeitet: 08.02.2026



https://ecampus.fh-erfurt.de/qisserver/pages/cs/sys/portal/hisinoneStartPage.faces

Ele- Element
ment aus.
aus.
Sum 4,0 60 65
Total Workload for Module 125

Learning Objectives /
Learning outcomes

10.

11.

12.

Explain and contrast Quality Assurance (QA), Quality Engi-
neering (QE), Development-Operations (DevOps), and Site
Reliability Engineering (SRE) practices, and justify shift-left and
shift-right quality approaches across the Software Development
Life Cycle (SDLC).

Design a system-specific quality strategy grounded in recognized
quality models (e.g., International Organization for Standardi-
zation / International Electrotechnical Commission (ISO/IEC)
25010), deriving measurable, testable quality attributes.

Define and implement a test strategy (test pyramid) with auto-
mated unit, component/contract, integration, and end-to-end
tests, including coverage and mutation-testing targets.

Build a Continuous Integration / Continuous Delivery (CI/CD)
pipeline with quality gates (linting, static analysis, dependency
scans and a Software Bill of Materials (SBOM)), artifact ver-
sioning, environment promotion, and safe release patterns (blue-
green, canary, rollback).

Apply Infrastructure as Code (laC) to provision reproducible,
ephemeral test/staging environments (e.g., containerized and or-
chestrated) and embed them into the delivery pipeline.
Instrument applications for observability (logs, metrics, traces),
define Service Level Indicators (SLIs) and Service Level Ob-
jectives (SLOs) with error budgets, and configure alerting for ac-
tionable incident response.

Plan and execute non-functional testing (performance,
load/stress, reliability/chaos experiments) and analyze results to
tune architecture and runtime configurations.

Integrate Development, Security, and Operations
(DevSecOps) practices—threat modeling, Static Application
Security Testing (SAST), Dynamic Application Security Test-
ing (DAST), Software Composition Analysis (SCA), secrets
management, and supply-chain security—and evaluate residual
risk and compliance impacts.

Use risk-based testing and applicable compliance requirements
to prioritize quality activities and justify trade-offs among cost,
time, scope, and quality.

Apply modern version-control and branching strategies (e.g.,
trunk-based, short-lived branches) with robust code review and
traceability to support continuous delivery.

Define, track, and interpret delivery and quality metrics (e.g., lead
time, deployment frequency, change-failure rate, Mean Time To
Restore (MTTR), defect trends) to drive continuous improve-
ment.

Document and communicate the quality architecture, pipeline de-
sign, and assurance evidence, and defend decisions to technical
and non-technical stakeholders.

Contents

The module integrates Quality Engineering with Development—
Operations (DevOps) to ensure continuous, measurable software
quality from code to production. Students design a quality strat-
egy, implement automated tests, and build Continuous Integra-
tion / Continuous Delivery (CI/CD) pipelines with quality gates.
They instrument services for observability and apply

Zuletzt bearbeitet: 08.02.2026




Development, Security, and Operations (DevSecOps) practices,
using delivery and reliability metrics for continuous improvement.

Core topics:

¢ Quality models (e.g., ISO/IEC 25010), quality attributes, ac-
ceptance criteria

o Risk-based test strategy; test pyramid (unit, component/contract,
integration, end-to-end)

e Code quality: linting, static analysis, dependency management,
Software Bill of Materials (SBOM)

o CI/CD pipelines: stages, quality gates, artifact versioning, promo-
tion, canary/blue-green/rollback

e Environments & Infrastructure as Code (IaC); containers/orches-
tration; secrets handling

e Observability: logs, metrics, traces; Service Level Indicators
(SLIs)/Service Level Objectives (SLOs), alerting, runbooks

¢ Non-functional testing: performance, reliability/chaos; tuning
based on findings

o DevSecOps: threat modeling, Static/Dynamic Application Secu-
rity Testing (SAST/DAST), Software Composition Analysis (SCA),
supply-chain security

Literature

Humble, J., & Farley, D. (2010). Continuous Delivery. Addison-
Wesley.

Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Sci-
ence of DevOps. IT Revolution.

Kim, G., Humble, J., Debois, P., & Willis, J. (2021). The DevOps
Handbook (2nd ed.). IT Revolution.

Meszaros, G. (2007). xUnit Test Patterns. Addison-Wesley.
Beck, K. (2002). Test-Driven Development: By Example. Addi-
son-Wesley.

Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (Eds.). (2016).
Site Reliability Engineering. O’Reilly.

Hidalgo, A. (2022). Implementing Service Level Objectives.
O'Reilly.

Majors, C., Fong-Jones, L., & Miranda, G. (2022). Observability
Engineering. O'Reilly.

Vehent, J. (2018). Securing DevOps. Manning.

ISO/IEC. (2011). ISO/IEC 25010:2011 Systems and software
quality models. ISO.

Zuletzt bearbeitet: 08.02.2026




