
Zuletzt bearbeitet: 08.02.2026

Die Modulbeschreibung sollte direkt über diesen Link in HISinOne eingepflegt werden.

Module code Module title Category

MAIE1050
Software Quality Engineering & DevOps MA
Degree program MA Software Engineering

Faculty Building Services Engineering and Computer Science

Module coordinator Prof. Dr. Volker Herwig
Module type Mandatory module
Frequency 1x annually in SuSe
Recommended semester 1. semester
Credit (ECTS-Points) 5

Academic Assessment
Method

Exam

PZ = Examination requirement (N: graded)

PZ (N), K90)

Teaching language English
Admission requirements for
this Module none

Module duration 1 Semester

Required Registration

Students enrolled in the above-mentioned degree program/standard se-
mester will be registered automatically upon re-enrollment; all other par-
ticipants, please refer to the information below.

none

Course Lecturer Type
Group
Size

(max.)

Number

of
Groups

Contact
hours

per
week
(SWS)

Workload (in h)

Face-
to-

face
Self-
study

1 Software Quality Engi-
neering & DevOps Extern Semi-

nar
30 1 4 60 65

2 Titel der Lehrver-
anstaltung. Dozent*in

Wählen
Sie ein
Ele-
ment
aus.

Wählen
Sie ein

Element
aus.

3

Titel der Lehrver-
anstaltung.

Dozent*in Wählen
Sie ein
Ele-
ment
aus.

Wählen
Sie ein

Element
aus.

4

 Wählen
Sie ein
Ele-
ment
aus.

5 Titel der Lehrver-
anstaltung.

Dozent*in Wählen
Sie ein Wählen

Sie ein

https://ecampus.fh-erfurt.de/qisserver/pages/cs/sys/portal/hisinoneStartPage.faces

Zuletzt bearbeitet: 08.02.2026

Ele-
ment
aus.

Element
aus.

Sum 4,0 60 65
Total Workload for Module 125

Learning Objectives /
Learning outcomes

1. Explain and contrast Quality Assurance (QA), Quality Engi-
neering (QE), Development–Operations (DevOps), and Site
Reliability Engineering (SRE) practices, and justify shift-left and
shift-right quality approaches across the Software Development
Life Cycle (SDLC).

2. Design a system-specific quality strategy grounded in recognized
quality models (e.g., International Organization for Standardi-
zation / International Electrotechnical Commission (ISO/IEC)
25010), deriving measurable, testable quality attributes.

3. Define and implement a test strategy (test pyramid) with auto-
mated unit, component/contract, integration, and end-to-end
tests, including coverage and mutation-testing targets.

4. Build a Continuous Integration / Continuous Delivery (CI/CD)
pipeline with quality gates (linting, static analysis, dependency
scans and a Software Bill of Materials (SBOM)), artifact ver-
sioning, environment promotion, and safe release patterns (blue-
green, canary, rollback).

5. Apply Infrastructure as Code (IaC) to provision reproducible,
ephemeral test/staging environments (e.g., containerized and or-
chestrated) and embed them into the delivery pipeline.

6. Instrument applications for observability (logs, metrics, traces),
define Service Level Indicators (SLIs) and Service Level Ob-
jectives (SLOs) with error budgets, and configure alerting for ac-
tionable incident response.

7. Plan and execute non-functional testing (performance,
load/stress, reliability/chaos experiments) and analyze results to
tune architecture and runtime configurations.

8. Integrate Development, Security, and Operations
(DevSecOps) practices—threat modeling, Static Application
Security Testing (SAST), Dynamic Application Security Test-
ing (DAST), Software Composition Analysis (SCA), secrets
management, and supply-chain security—and evaluate residual
risk and compliance impacts.

9. Use risk-based testing and applicable compliance requirements
to prioritize quality activities and justify trade-offs among cost,
time, scope, and quality.

10. Apply modern version-control and branching strategies (e.g.,
trunk-based, short-lived branches) with robust code review and
traceability to support continuous delivery.

11. Define, track, and interpret delivery and quality metrics (e.g., lead
time, deployment frequency, change-failure rate, Mean Time To
Restore (MTTR), defect trends) to drive continuous improve-
ment.

12. Document and communicate the quality architecture, pipeline de-
sign, and assurance evidence, and defend decisions to technical
and non-technical stakeholders.

	

Contents

• The module integrates Quality Engineering with Development–

Operations (DevOps) to ensure continuous, measurable software
quality from code to production. Students design a quality strat-
egy, implement automated tests, and build Continuous Integra-
tion / Continuous Delivery (CI/CD) pipelines with quality gates.
They instrument services for observability and apply

Zuletzt bearbeitet: 08.02.2026

Development, Security, and Operations (DevSecOps) practices,
using delivery and reliability metrics for continuous improvement.

Core topics:
• Quality models (e.g., ISO/IEC 25010), quality attributes, ac-

ceptance criteria
• Risk-based test strategy; test pyramid (unit, component/contract,

integration, end-to-end)
• Code quality: linting, static analysis, dependency management,

Software Bill of Materials (SBOM)
• CI/CD pipelines: stages, quality gates, artifact versioning, promo-

tion, canary/blue-green/rollback
• Environments & Infrastructure as Code (IaC); containers/orches-

tration; secrets handling
• Observability: logs, metrics, traces; Service Level Indicators

(SLIs)/Service Level Objectives (SLOs), alerting, runbooks
• Non-functional testing: performance, reliability/chaos; tuning

based on findings
• DevSecOps: threat modeling, Static/Dynamic Application Secu-

rity Testing (SAST/DAST), Software Composition Analysis (SCA),
supply-chain security

Literature

• Humble, J., & Farley, D. (2010). Continuous Delivery. Addison-
Wesley.

• Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Sci-
ence of DevOps. IT Revolution.

• Kim, G., Humble, J., Debois, P., & Willis, J. (2021). The DevOps
Handbook (2nd ed.). IT Revolution.

• Meszaros, G. (2007). xUnit Test Patterns. Addison-Wesley.
• Beck, K. (2002). Test-Driven Development: By Example. Addi-

son-Wesley.
• Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (Eds.). (2016).

Site Reliability Engineering. O’Reilly.
• Hidalgo, A. (2022). Implementing Service Level Objectives.

O’Reilly.
• Majors, C., Fong-Jones, L., & Miranda, G. (2022). Observability

Engineering. O’Reilly.
• Vehent, J. (2018). Securing DevOps. Manning.
• ISO/IEC. (2011). ISO/IEC 25010:2011 Systems and software

quality models. ISO.
•

